
International Journal of Theoretical Physics, Vol. 38, No. 12, 1999

On Three Notions of Orthosummability in
Orthoalgebras
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We consider three notions of orthosummabil ity for orthoalgebras that were
recently introduced by Habil, Wilce, and Younce, respectively. Habil’ s
orthosummabili ty is shown to be equivalent to Wilce’ s. Younce’ s
orthosummabili ty is shown to be equivalent to Habil/Wilce’ s under the assumption
that all blocks are suborthosummab le.

1. INTRODUCTION

Noncommutative measure theoryÐ the study of measures and states on

algebraic structures less rich than a s -fieldÐ arose from the realization that

quantum mechanical events, instead of forming a s -field, only form a s -
orthocomplete orthomodular lattice [Gu]. The nonexistence of a tensor prod-

uct for such structures led to the inception of orthoalgebras, a less rich

algebraic structure which admits a tensor product [Go].

In this section we will first introduce orthoalgebras (Definition 1.1) and

show how they generalize more familiar ordered orthostructures (Lemmas
1.2 and 1.3). After this we introduce the three notions of orthosumability

with which we are concerned (Definition 1.5).

Younce’ s notion is helpful when proving a result for the blocks first and

then generalizing to a similar result for orthoalgebras. Wilce’s notion is

motivated by the connection between orthoalgebras and manuals. Habil’ s

notion is a natural infinitary generalization of the summation % . It also [Ha1,
Lemma 3.8] extends the notion of orthocompleteness for orthomodular posets

to the setting of orthoalgebras. We will use purely order-theoretic methods

to show that Wilce’s and Habil’ s notions are equivalent (Theorem 2.7) and
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that Younce’ s and Habil/Wilce’ s notions are ª almost equivalentº (Theorem

2.5). Some of these results have for the countable case been established by

Habil [Ha1, [Ha2] and Feldman and Wilce [FW]. Theorem 2.8 expresses
Younce’ s notion of orthosummability in terms of chains in blocks. Younce’ s

notion seems to be stronger than Habil/Wilce’ s as it also implies the subortho-

summability of all blocks (Definition 1.6). However, there is still no example

that shows Younce’ s notion to be genuinely stronger. To wit: There is currently

no example of an orthoalgebra that is m-orthosummable in the sense of Habil/

Wilce and that contains a block that is not Habil-sub-m-orthosummable. In
Section 3 we give some examples which seem to indicate that Younce’ s

notion should be genuinely stronger.

Definition 1.1 [Go, Ha1, Ha2]. An orthoalgebra is a quadruple (L, % ,

0, 1), where L is a set containing two special elements 0, 1 and % is a

partially defined binary operation on L that satisfies the following for all p,
q, r P L:

(OA1) (Commutativity). If p % q is defined, then q % p is defined

and p % q 5 q % p.

(OA2) (Associativity). If q % r and p % (q % r) are defined, then p
% q and ( p % q) % r are defined and p % (q % r) 5 ( p % q)
% r.

(OA3) (Orthocomplementation). For every p P L there is a unique

q P L such that p % q is defined and p % q 5 1.

(OA4) (Consistency). If p % p is defined, then p 5 0.

Lemma 1.2 [Ha1, Ha2]. Let L be an orthoalgebra.

(a) p, q are called orthogonal ( p ’ q) iff p % q is defined.

(b) L is a partially ordered set with the order defined as follows. For

p, q P L, we have p # q iff there is an r ’ p with q 5 p % r.
(c) L is an orthoposet with the orthocomplement of p being the unique

element p8 P L with p % p8 5 1.

(d) L satisfies the orthomodular identity: If p # q, then q 5 p % ( p
% q8)8. We set q 2 p : 5 ( p % q8)8.

Lemma 1.3 [Ha1, Ha2]:

(i) The orthoalgebra L is an orthomodular poset (OMP) if for any

two p ’ q the supremum p Ú q exists.

(ii) The orthoalgebra L is an orthomodular lattice (OML) if for any
two p, q P L the supremum p Ú q exists.

(iii) The orthoalgebra L is a Boolean algebra if L is a distributive OML,

(iv) Any OMP, OML, or Boolean algebra is an orthoalgebra with p
% q : 5 p Ú q for any two p, q with p # q8.
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Definition 1.4. Let L be an orthoalgebra. M # L is a suborthoalgebra
iff 0, 1 P M and for all p, q P M we have that p8 P M and if p % q is

defined, p % q P M. Every suborthoalgebra is an orthoalgebra with the
restrictions of the original operations. A suborthoalgebra that is a Boolean

algebra is called a Boolean subalgebra . A maximal Boolean subalgebra is

called a block. X # L is called jointly orthogonal iff there is a block that

contains X and any two elements of X are orthogonal. We let J(L) be the set

of all jointly orthogonal subsets of L.

Definition 1.5. Let L be an orthoalgebra and let m be a cardinal. Then
L is called m-orthosummable:

(Ha) in the sense of Habil [Ha1, Ha2] iff for every X P J(L) with ) X )
# m we have that

% X : 5 ~
L

F P ^(X)
% F

exists in L [^(X ) denotes the set of all finite subsets of X ].

(Wi) In the sense of Wilce [Wi] iff every chain X # L with ) X ) # m
has a supremum in L.

(Yo) In the sense of Younce [Yo] iff for every X P J(L) with ) X ) # m
we have that for all blocks B of L with X # B, the supremum Ú B X exists
and if A, B are two blocks with X # A ù B, then Ú A X 5 Ú B X.

Definition 1.6 [Ha1, Definition 3.6]. Let L be an orthoalgebra that is m-

orthosummable in the sense of Habil and let A # L be a suborthoalgebra.

Then A is called Habil-sub-m-orthosummable iff for each X # A with X P
J(L) and ) X ) # m we have that % X P A.

2. RESULTS ON ORTHOSUMMABILITY

Lemma 2.1 (Cancellation law; [Ha1, Ha2]). Let L be an orthoalgebra.
If p, q ’ r and p % r # q % r, then p # q. n

Lemma 2.2 ([Ha1, Lemma 3.14] or [Ha2, Lemma 4.11], easy modifica-

tion). Let L be an orthoalgebra that is m-orthosummable in the sense of
Habil. Assume each block of L is Habil-sub-m-orthosummable. Then L is

m-orthosummable in the sense of Younce. n

Lemma 2.3. Let L be an orthoalgebra and let S P J(L). Assume that for
all blocks A, B $ S and all T # S with ) T ) , ) S ) the suprema Ú BT and Ú AT
exist and are equal. Then there is a chain C # L with the following properties:

1. For all blocks B # L we have that S # B iff C # B.

2. For all blocks B # L that contain S and C
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{x P B ) " c P C: x $ c} 5 {x P B ) " s P S: x $ s}

3. In every block B # L with B $ C ø S each c P C is the supremum

of a subset T # S with ) T ) , ) S ) .
4. For all F P ^(S) there is a c P C with c $ % F.

Proof. If S is finite, the claim is trivial. In case S is infinite, we argue

as follows: Let B be a block that contains S. Let g be the first ordinal with

) g ) 5 ) S ) . Use g to index S as S 5 {s a : a , g }. For each b , g we have

) {s a : a , b }) 5 ) b ) , ) g ) 5 ) S ) . Hence we can define

c b : 5 ~
B

{s a : a , b }

for all b , g . Let

C : 5 {c b : b , g }

Since the suprema that occur in the definition of the c b are by hypothesis
independent of the block in which they are taken, we infer that every block

that contains S also contains C. Conversely, if A is a block that contains C,

then A contains all c b 1 1 2 c b . However,

c b % (c b 1 1 2 c b ) 5 c b 1 1 5 c b ~
B

s b 5 c b % s b

(all equalities are valid in B, hence in L) and hence by the cancellation law,

Lemma 2.1, s b 5 c b 1 1 2 c b P A. This shows that S # A. Thus part 1 is proved.
Part 3 now follows from the hypothesis that the suprema were indepen-

dent of the block in which they were taken. To prove 4 notice that for F P
^(S) we have % F 5 Ú B F. Find b , g such that F # {s a : a , b }. Then

c b $ % F. Finally, it is easy to see that in any block B $ C ø S every upper

bound of C is an upper bound of S. Conversely, in every block B $ C ø S
each upper bound of S is bigger than all c b and is hence an upper bound of

C. This proves 2. n

Lemma 2.4 ([Ha1, Corollary 3.2] or [Ha2, Lemma 4.1]). Let L be an

orthoalgebra. Every chain C # L is jointly compatible, i.e., there is a block

B # L with C # B.

Theorem 2.5. Let L be an orthoalgebra and let m be a cardinal. Then

the following are equivalent:

1. L is m-orthosummable in the sense of Habil and each block of L is

Habil-sub-m-orthosummable,
2. L is m-orthosummable in the sense of Younce.

Proof. By Lemma 2.2 we only have to prove that part 2 implies part 1.

To do this we will prove by induction on ) X ) that for every X P J(L) with
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) X ) # m the generalized sum % X exists and for all blocks B $ X we have

% X P B and % X 5 Ú B X.

If X is finite, there is nothing to prove.
If X is infinite, assume that the statement is true for all T P J(L) with

) T ) , ) X ) . Let B be a block that contains X and let C be a chain in B as

guaranteed by Lemma 2.3 for S : 5 X. By Lemma 2.3, part 3, for each c P
C there is a Tc # X with c 5 Ú B Tc and ) Tc ) , ) X ) . Thus by induction

hypothesis c 5 % Tc. By part 2 of Lemma 2.3, Ú B X is an upper bound for

C. Hence by part 4 of Lemma 2.3, Ú B X is an upper bound for all % F, F P
^(X ). Suppose p is another upper bound of all % F, F P ^(X ). Then p $
% Tc 5 c for all c P C. By Lemma 2.4 there is a block A such that C ø
{p } # A. By part 1 of Lemma 2.3, X ø C ø {p } # A. Thus p $ Ú A X 5
Ú B X. This shows that Ú B X 5 % X. Since Ú B X is the supremum of X in

any block that contains X we are done. n

Lemma 2.6 ([Ha1, Theorem 3.5] or [Ha2, Theorem 4.4]). Let L be an
orthoalgebra that is m-orthosummable in the sense of Habil. Then L is m-

orthosummable in the sense of Wilce.

Theorem 2.7. Let L be an orthoalgebra and let m be a cardinal. The
following are equivalent:

1. L is m-orthosummable in the sense of Habil.

2. L is m-orthosummable in the sense of Wilce.

Proof. By Lemma 2.6 we only need to prove that part 2 implies part 1.

To do this we will prove the following: Let L be an orthoalgebra that is m-

orthosummable in the sense of Wilce and let X P J(L) with ) X ) # m. Then

% X exists and if X is infinite, it is equal to Ú C, where

C : 5 {% {x a : a , b }: b , g }

with {x a : a , g } being an arbitrary indexing of X with g , the first ordinal

with ) g ) 5 ) X ) .
Induction on ) X ) : If X is finite, there is nothing to prove.

Induction step: Let X be infinite, ) X ) # m, and let g be the first ordinal

with ) g ) 5 ) X ) . The induction hypothesis is that for all S P J(L) with ) S ) ,
) X ) , % S exists (and has a representation as above). Let X 5 {x a : a , g }
be an indexing as desired. By induction hypothesis the chain

C : 5 {% {x a : a , b }: b , g }

exists in L. Since L is m-orthosummable in the sense of Wilce and ) C ) 5
) X ) # m, the supremum s : 5 Ú L C exists. To see that s is an upper bound of

{% F: F P ^(X ) }, let {x a 1, . . . , x a n } P ^(X ). Without loss of generality
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assume that a 1 # a 2 # ? ? ? # a n. Then {x a 1, . . . , x a n } # {x a : a , a n 1
1} and hence

s $ % {x a : a , a n 1 1} $ % {x a 1, . . . , x a n }

Finally, to see that s is the desired supremum, let p be an upper bound of

{% F: F P ^(X ) }. Then for all b , g , p is an upper bound of {% F: F P
^( {x a : a , b }) }. Hence p $ % {x a : a , b } for all b , g , i.e., p is an upper

bound of C, which implies p $ s. n

Theorem 2.8. Let L be an orthoalgebra and let m be a cardinal. The

following are equivalent:

1. L is m-orthosummable in the sense of Habil and each block in L is

Habil-sub-m-orthosummable.

2. Every chain C # L with ) C ) # m has a supremum Ú L C and every

block that contains C also contains Ú L C.

Proof. ª 1 Þ 2º is an easy modification of Corollary 4.1 0 in [Ha2]. To

prove the converse, we will prove that part 2 implies L is m-orthosummable

in the sense of Younce. Let X P J(L) with ) X ) # m. We need to prove that

for all blocks A, B $ X the suprema Ú A X and Ú B X exist and are equal. We

proceed by induction on ) X ) :
If X is finite, there is nothing to prove.

Induction step: Assume X P J(L) with ) X ) # m and assume that the

assertion holds for all T P J(L) with ) T ) , ) X ) . Let D be a block that contains

X and apply Lemma 2.3 to S : 5 X to obtain a chain C. By assumption Ú L

C is in every block B $ C. Hence Ú B C 5 Ú L C for all blocks B $ C. By
Lemma 2.3 every block B that contains X or C actually contains X ø C and

X and C have the same upper bounds in B. Thus Ú B C 5 Ú B X. Finally if A,

B $ X are blocks, then Ú A X 5 Ú A C 5 Ú L C 5 Ú B C 5 Ú B X, and we

are done. n

3. EXAMPLES ON SUBORTHOSUMMABILITY

A question that remains open is whether in an orthoalgebra that is m-

orthosummable in the sense of Habil every block is Habil-sub-m-orthosumma-

ble. A positive answer to this question would show that all three notions of

orthosummability actually coincide. In [Ha1], Remark 3.7, an example is

given that shows that not all Boolean subalgebras of an orthosummable
orthoalgebra need be suborthosummable. No examples involving blocks were

known. In the following we give an example of an orthoalgebra L and a

block B # L such that there is a chain C # B that has a supremum in L, but

no supremum in B (Example 3.2), and an example of an orthoalgebra L and
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a block B # L such that there is a chain C # B that has a supremum in L,

a supremum in B, but the suprema do not coincide (Example 3.6). This shows

that blocks need not be suborthosummable, as a supremum for a chain need
not exist in the block and even if a chain has a supremum in a block, it need

not be the supremum in L. However, the orthoalgebras in our examples are

not orthosummable, hence this does not imply a negative answer to the

above question.

For terminology regarding the paste job of two orthoalgebras we adhere

to the terminology of the exposition in [Ha1], resp. [Ha3]:

Definition 3.1. Let L be an orthoalgebra. An order ideal is a nonempty

subset I # L such that for all a, b P L with a # b we have that b P I implies

a P I. Let I 8 : 5 {x P L: x8 P I }. A section S # L is a suborthoalgebra

such that there is an order ideal I with I ù I 8 5 0¤ and S 5 I ø I 8.
Let L1, L2 be orthoalgebras and let Sj : 5 Ij ù I 8j # Lj be sections. S1,

S2 are called corresponding sections iff there exists an orthoalgebra-isomor-
phism u : S1 ® S2 such that u [I1] 5 I2 and u [I 81] 5 I 82. Paste L1 and L2 together

by identifying each a P S1 with u (a) P S2. For the equivalence classes define

[a] % [b] :

5 H [a1 % b1] if [a] ù L1 5 {a1 }, [b] ù L1 5 {b1}, and a1 ’ b1

[a2 % b2] if [a] ù L2 5 {a2 }, [b] ù L2 5 {b2}, and a2 ’ b2

As shown in [Ha1] and [Ha3] the object thus obtained is again an orthoalgebra,

the ª paste jobº of L1 and L2 ([Ha3, Theorem 3.15]. Moreover if L1 and L2

are orthoposets, then the paste job is again an orthoposet [Ha3, Theorem 3.17].

Example 3.2. Let R, N be the sets of real, resp. natural numbers. Let

^(R), #^(R) denote the sets of finite, resp. cofinite subsets of R, and let

3(X ) denote the power set of X. Let

L1 : 5 (^(R) ø #^(R)) 3 {1}

L2 : 5 (3(N ) ø {R \S: S P 3(N ) }) 3 {2}

be two copies of Boolean subalgebras of 3(R). If

Ij : 5 (^(R) ù 3(N )) 3 { j} # Lj

then

I 8j 5 (#^(R) ù {R \S: S P 3(N ) }) 3 { j}

and the sections

Sj : 5 Ij ø I 8j

are corresponding sections. Let L be the orthoalgebra that is obtained by
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pasting L1 and L2 through the corresponding sections S1 and S2 (L actually

is even an OMP). It can be proved that L1 # L actually is a block of L.

However, the chain C : 5 {{1, . . . ,n }: n P N } does not have a supremum
in L1, while it clearly has N as a supremum in L.

The proofs of the next three lemmas are easy and will be left to the reader.

Lemma 3.3. Let P be an orthoposet and let C # P be a chain that does

not contain 1. Let IC : 5 {p P L ) $ c P C: c $ p } Then SC : 5 IC ø I 8C is a
section of L.

Lemma 3.4. Let L be an orthoalgebra (OMP, OML). Equip L 3 {0, 1}

with the pointwise operations. Then L 3 {0, 1} is an orthoalgebra (OMP,

OML).

Lemma 3.5. Let B be a Boolean algebra and let a P B be an atom. Then

for all b P B we have b $ a or b # a8.

Example 3.6. Let 3(N ) be the power set of the natural numbers and let

Tn : 5 {1, . . . , n}. Let S : 5 S {Tn:n P N} 5 I {Tn:n P N} ø I 8{Tn:n P N } as in Lemma
3.3. Paste 3(N ) and S 3 {0, 1} together by identifying I {Tn:n P N } with

I {Tn:n P N } 3 {0} and I 8{Tn:n P N } with I 8{Tn:n P N } 3 {1} and call the resulting

orthoposet P. Then (N, 0) 5 ~ P
n P N Tn and (N, 0) is a coatom in P. Let B be

any block of P that contains 3(N ). Then by Lemma 3.5, B does not contain

(0¤, 1) (it would have to be an atom in B; however, it does not satisfy the

property stated in Lemma 3.5) and hence (N, 0) ¸ B. Thus ~ B
n P NTn 5 1 Þ

(N, 0) 5 ~ P
n P NTn.

Remark 3.7. We would have an example that Younce’ s s -orthosummabil-

ity is genuinely stronger than Habil/Wilce’ s if we could embed the above

example into a s -complete orthoalgebra in which (N, 0) still is a coatom and

the supremum of the Tn.
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